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Abstract - A novel imaging mode of cone-beam volume CT is
proposed in this paper. It adopts a raster scanning x-ray source
on a trough-like surface, and a group of point detectors
distributing on a large circle plus an orthogonal arc. Through a
single rotation of the trough-like surface, a full set of projection
data can be acquired and an accurate 3D image can be
reconstructed. This paper describes the shape and dimension of
the trough-like x-ray source and the configuration of detectors
in detail, proves that this structure is satisfied with the
completeness condition, and gives a reconstruction algorithm of
3-D image adapting to this structure. Computer simulations
show that this structure could achieve optimal result in meeting
the following requirements: minimum time of rotation, less
Compton scatter, and fast image reconstruction speed while
keeping the completeness condition to be realized.
Keywords - Volume CT, completeness condition, trough-like
surface, point detector, image reconstruction

 I. INTRODUCTION

As an extension technology of traditional computed
tomography, direct volume CT has been a hot topic in recent
years. Comparing with traditional CT, volume CT improves
the dose usage of X-ray, the speed of projections collecting,
and most important it is able to provide isotropic
reconstruction images in spatial domain.

To reconstruct a 3-D image exactly from 2-D projection
data, Tuy [1] showed that each projection plane passing
through the object should intersect the orbit of the source
vertex. This requirement is referred to as Tuy’s data
completeness condition. Only if the completeness condition
is met, the precise reconstruction could be ensured.

At present, there are several methods for direct volume
CT, such as direct volume CT based on ideal vertexes of the
cone-beam [2], direct volume CT based on limited projection

[3], helical or spiral volume CT [4]. These scanning modes of
cone-beam CT have the following shortcomings: (1)the ideal
non-planar geometry of the vertex orbits are almost
impossible to be implemented, (2)the effect of Compton
scatter to planar detectors is so heavy that reconstruction
images have severe artifacts, (3)the reconstruction algorithm
is very complex and time-consuming, and so on.

In this paper we break all above conventional scanning
structures of volume CT, and propose a new imaging mode of
volume CT based on a trough-like x-ray source and point
detectors. This structure could gain full projections through a
single time rotation of the trough-like x-ray source.

 II. NEW IMAGING MODE OF VOLUME CT

A. Reverse Geometry of X-ray Radiology

R. D. Albert, T. M. Albert proposed a reverse geometry of x-
ray (RGX) technology [5]. The principle of the RGX system is that
the object is placed next to a large raster scanning x-ray source with
a point detector located 5cm~3m away from the object.

The remoteness and small size of the detector eliminates
nearly all scattered x-rays from detection, therefore it would
improve resolution and avoid artifacts in the reconstructed images.

B. A Direct Volume CT with X-ray from a Trough-like Surface
and Point-detectors on Circle-plus-arc Curve

We adopt RGX mode in direct volume CT and mend the
structure of RGX in following ways. Its scanning structure is shown
in Figure 1. Firstly, to gain complete projections, we use a trough-
like surface instead of a planar raster scanning x-ray source.
Secondly, in stead of a single point detector, we use a group of point
detectors distributed on a large circle plus a perpendicular arc in the
gantry to collect projections,.
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Figure 1. The structure of a novel volume CT with x-ray from a trough-like surface and point-detectors on circle-plus-arc curve.
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The point detectors which evenly distribute on a large circle
and an arc are indicated by open circles in Figure 1. The trough-like
x-ray source at the initial position is to be rotated to the second
position as indicated by the gray shape in the figure to ensure the
completeness of projections. To simplify the mathematical
derivation, it is assumed that the object, the x-ray source orbit and
the detectors are concentric circles with the center at point O, and
radii 1r , 2r , 3r  respectively. They should meet certain conditions

according to Tuy’s completeness condition.
According to the completeness condition, x-ray from the

trough-like surface should not be sheltered by itself. Through
calculating, we have a set of approximate solutions: 12 3rr = ,

13 8rr = .

Now let’s show the length of the perpendicular arc, the
other part of detectors orbits.

To satisfy the completeness condition, and in terms of
the above set of approximate solution, we set the radian of
perpendicular arc to 

8
1arcsin4 .

Furthermore, we need to know the width of the trough-like
surface. Through the extreme point of the perpendicular arc we draw
a tangent line of the object. The point where the tangent line
intersects the trough-like surface is the extreme point of the trough.
After calculating, we set its width to 13r .

C. The Proof of the Completeness Condition

Through a single movement of the trough-like x-ray source,
the volume imaging system described in this paper could “wrap” the
object completely. As is known that any plane through the object
intersects the orbits of the cone-beam x-ray at least once. So the
system satisfies Tuy’s completeness condition.

Moreover, from the view of the detectors, they evenly
distribute on a large circle and a perpendicular arc, which is
equivalent to that the vertex of a cone-beam x-ray moves on the
orthogonal circle-and-arc orbit. This shows that the scanning
structure satisfies completeness condition. We have to point out that
the detectors at the lower part of the large circle can’t gain all
projections for sheltered by the trough-like surface itself. But the
radian of perpendicular arc is 

8
1arcsin4 , then the detectors on the

perpendicular arc can gain the projections which are sheltered. From
all of above, the direct volume CT system satisfies Tuy’s
completeness condition.

 III. IMAGE RECONSTRUCTION

A. Cone-beam Projection and 3-D Radon Transform

3D Radon transform and Grangeat’s formula are the typical
and efficient reconstruction algorithm for volume CT based on
orthogonal circle-and-arc orbit.

The cone-beam projection ),( ASg  of the object function

)(xf
r

 can be expressed as
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where ),( ASg  is the projection from the cone-beam focal
point S to a point A in the detector plane.

The Radon transform of the object is defined as the plane
integral of )(xf

r
. In Figure 2, any Radon plane ζ  can be defined

by a unit vector θ̂  and a scalar ρ  where
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using the inverse 3D Radon transform [6]
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such that the p axis is perpendicular to line 21DD . The distance

from the origin of the coordinates to line 21DD  is p . Let point A

be a point on line 21DD  with ),,0( ωυ as its coordinate in

),,( ωυµ  system. Then σ̂ , the directional vector of the line

integral along SA  can be uniquely determined by Φ
r

, υ  and ω .

So the cone-beam projection along line SA  can be described by

),,( ωυΦ
r

g . Now Grangeat’s formula can be expressed as
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so we get the new equation from equation (6) as follows:
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    Since the partial derivatives ),,( ωυ
υ

Φ
∂
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G and

),,( ωυ
ω

Φ
∂
∂ r

G  need to be calculated only once in the whole

reconstruction process, the computational complexity is greatly
reduced.

C. Projections Rebinning

The rebinning of projections is to find the transform functions
among the parameters on the left side and the right side of equation
(8). That is for each point ),,( ρϕθ  in the Radon space, calculating

the corresponding S, the focal point position; α , the direction of
the integration; and p , the distance from the line of the integration

to the origin of the coordinates.
To our volume scanning structure, we adopt the geometry with

the positions of detectors and x-ray source reversed. In the case of
image reconstruction, the circle and arc, which the detectors are

located, can be regarded as the orbit of cone-beam vertexes; and the
trough-like x-ray source can be treated as detector pixels on the
trough-like surface. The reconstruction algorithm of orthogonal
circle-and-arc orbit volume CT can be utilized in our system. Hence,
we adopt the backward mapping method for rebinning projections
here [7].

We assume that any Radon plane intersects the circle orbit at
two points, named S1 and S2, and the position arrangement for S1→

S2→O is counterclockwise if one observes from above the circle

orbit. Second, let’s suppose that the angle between 1OS  and the x

axis is 1cφ  and that between 2OS  and the x  axis is 2cφ . Then,

for a given point ),,( ρϕθ  in the Radon space, 1cφ  and 2cφ  can be

calculated directly from the coordinates of S1 and S2, respectively.
(1) Rebinning from the circular orbit:
For a given ),,( ρϕθ , p  and α  can be solved exactly for

1cφ
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and for 2cφ : 
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(2)  Rebinning from the arc orbit:
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Next step, we need to find the mapping of the projection data
from the plane to the trough-like surface. In Figure 8, for a point

),,( pαΦ
r

 in the detector plane there is a point ),,( tβΦ
r

 in the

trough-like surface, where β  and t  can be calculated via the
following equations:
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where x is the positive solution of the following equation:
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So far, based on the first derivative of the Radon transform
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 from the rebinning process, calculation of the second

derivative can be accomplished by convoluting ),ˆ( ρθ
ρ

R
∂
∂

with a

1-D derivative filter. The object )(xf
r

can be reconstructed by back
projection, as indicated in equation (4).

D. 3-D Reconstruction Algorithm

Once the cone-beam projections are obtained, the procedure to
reconstruct the 3D images from the projections is descried as
follows:

1) Pre-weighting cone-beam projections, using equation (6);
2) Calculating the partial derivatives of the pre-weighted

projections, using equation (7);
3) Rebining the first derivative of Radon transform, using

equations (8), (9) and (10);
4) Calculating the second derivative of Radon transform ,

using equation (11) and (12);
5) Reconstructing the images by inverse Radon transforms,

using equation (4).

 IV. SIMULATION EXPERIMENT

We make simulation experiment with Shepp-Logan
phantom to verify our 3-D imaging system and its
reconstruction algorithm. In the experiments, we place point
detectors 3°apart on the circle-plus-arc orbit. The total
number of detectors is 130. This is equivalent to cone-beam
x-ray scanning at 130 positions and gaining 130 groups of
projection data. A transverse slice of the Shepp-Logan
phantom at z=-38.5 mm is in Figure 5(a) for reference, which
is directly calculated from the phantom data. Figure 5(b) is
the same slice reconstructed from projection data. Their
corresponding profiles are shown in Figure 5 (c) and (d). The
artifact in the reconstruction image are due to: (1) sampling
rate (the number of detectors on the circle-plus-arc orbit), (2)
the error from two phases of rebinning of projection data to
Radon space.

 V. CONCLUSION

The volume CT with a trough-like source and point-detectors
proposed in this paper has some innovations as follows:

(1) A novel geometry of raster scanning x-ray source that
simplifies machine structure.

(2) Using certain distributing detectors, the imaging system
could gain full projections through the trough-like x-ray source
rotation only a single time. So it achieves optimal combination of
the following aspects: minimize rotating times, Compton scatter to
be restrained, and image reconstruction speed to be improved.

And from above simulation experiments, we can see that the
direct volume CT scanning structure proposed in this paper achieves
not only faster scanning speed but also more precise reconstruction
image than the methods in the literature. Moreover, this structure
does not need to move the patient during scanning, which is suitable
for image-guided surgery. Besides that, this system specially suits
for micro-animal imaging, which can be used to check the micro
focus of infection, track the curative effect of new medicine or gene,
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